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J. Phys. A: Math. Gen., Vol. 12, No. 12, 1979. Printed in Great Britain 

Configurational properties of self -interacting linear 
polymer chains in a three-dimensional continuum: 
11. Internal distributions, radius of gyration 

Clive A Croxton 
Department of Mathematics, University of Newcastle, Newcastle, NSW, 2308 Australia 

Received 16 January 1979 

Abstract. The internal distributions within a freely pivoted self-avoiding polymer are 
determined on the basis of a simple diagrammatic convolution technique in conjunction 
with a superposition approximation. It is found that the mean square lengths of internal 
subsets are expanded with respect to their isolated values to an extent depending upon the 
proximity of the subset to either end of the chain. For chainsof length much greater than the 
length of subset, asymmetricscreening by the tail ‘crowds-in’ the internal subset, and shows 
signs of incipient collapse-a result familiar in dense fluid systems. 

1. Introduction 

Despite its close relation to the experimentally more accessible characteristics of dilute 
polymer solutions, such as diffusion, viscosity and light scattering, the mean square 
radius of gyration ( S 2 )  of an isolated polymer has received relatively little attention in 
comparison with the more readily calculable, but experimentally generally inaccessible, 
mean square end-to-end distance (R2) .  Such attention as the radius of gyration has 
received has been restricted almost exclusively to Monte Carlo or  exact enumeration 
studies of self-avoiding walks on regular lattices. Certainly the calculation of (S’) for a 
perfectly flexible chain of segments incorporating excluded volume effects is a substan- 
tially more ambitious task than is the calculation of the mean square end-to-end 
separation. A determination of (S’) requires a knowledge of all the internal dis- 
tributions Z( i ,  i + k )  which, in general, will differ from the distribution of an isolated 
chain of k segments. Moreover, the internal distribution may be expected to depend 
both on the number of segments N in the entire chain, Z( i ,  i + klN),  and on the location 
of the subset within the chain, i.e. Z( i ,  i +klN) # Z(m,  m + klN),  i f k # m, 1 < 
i, m, k < N, although presumably certain of the internal distributions are symmetrical. 

Monte Carlo and exact enumeration studies on regular lattices seem to suggest that 
for a self-avoiding walk on a regular lattice (S:) = bn”’, where b is a lattice-dependent 
constant, n = N - 1 is the number of links in the chain, and y’ is an exponent. Moreover, 
y’ appears to be identical to y, the exponent appearing in the expression (R: )  = a n y  for 
lattice walks, at least to within ‘experimental’ error. The equality of the two exponents 
has not, however, been demonstrated convincingly for self-avoiding walks in a 
continuum (see references to Monte Carlo and exact enumeration studies in Croxton 
(1979), hereafter referred to as I). 
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The only exact analytic result available is for the case of zero excluded volume, in 
which case (S:)  = n(n  + 2 ) / 6 ( n  + 1). Since there is no self-interference within the chain, 
all internal distributions developed between elements separated by k links are identical 
to the isolated end-to-end distribution of a k-link chain, and this simplification enables 
the analysis to proceed. In this paper we investigate various models for the internal 
distribution and determine their associated radii of gyration. 

2. The internal distributions 2 (i, i + k IN) 

It is straightforward to show that the radius of gyration may be expressed as 

N ( R ; )  
CSi)=CC,-, i.i=l 

that is, as a double sum over all the internal mean square separations. Despite the 
various machine determinations of the dependence of (S: )  on chain length, no explicit 
discussion has appeared in the literature regarding the internal distributions them- 
selves. Presumably, in the presence of excluded volume effects we may anticipate that 
the internal distributions will differ from their isolated values. Thus (R2(i ,  i + k ) / N )  i 
( R 2 ( k ) ) .  If we assume that the internal mean square lengthssatisfy an exponent relation 
of the same form as for the isolated distributions, then 

where Tint is some mean internal exponent. 
In making this assumption we have excluded the possibility that an internal 

distribution for, say, a subset of m segments depends upon the location of the subset 
within the chain. Moreover, we are also assuming that the internal distributions are 
independent of the length N of the chain. To produce an exponent ys -1 .2 ,  a widely 
reported value on the basis of machine simulation, we find that rint needs to be -1.38: 
the internal distributions are, generally sp.eaking, expanded with respect to their 
isolated form. 

3. The internal distributions Z(liliV), Z(i j lN) 

The fully bonded diagram of, for example, order 5 is 

,&L 
1 5  

and, by neglecting certain of the internal bonding configurations as described in I, we 
have been able to establish a lower bound on the mean square end-to-end separation, 
and the associated probability distribution. We now consider the internal distributions 
Z(li1N) for such a system, and for simplicity we take the case Z(1315). As in the theory 
of classical fluids there is a hierarchical relationship between two- and three-segment 
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distribution functions: for example, we may write 

Z(1ilN) = IZ(1iN) dN, (3) 

where Z(1ilN) represents the l i  segment distribution in an N-mer, and Z(1iN) 
represents the three-segment (liN) distribution. Generally, Z(1ilN) # Z (  li); that is, 
the internal distributions differ from the isolated functions. However, for the perfectly 
flexible (y = 1) and perfectly stiff ( y  = 2) chains we do have Z(1ilN) = Z(1i). It remains 
to express Z(1iN) in terms of known functions, and a form of Kirkwood superposition 
approximation (KSA) would appear to be the obvious choice. Consideration of 
diagram (2) in conjunction with a KSA might suggest 

Z(1ilN) =Z(li)  IZ(iN)H(lN) dN (4) 

(where H represents the exclusion bond defined in I); however, it is immediately 
apparent that much of the important cross-correlation between Z(1i) and Z ( i N )  is 
neglected. In other words, approximation (4) assumes that the component correlations 
develop as if in isolation. Indeed, the only accurate internal distribution function would 
be 

Z(ljlj+l)=Z(lj) I Z(j,j+l)H(lj+l)d(j+l) 

= Z(1j) I S ( j ,  j +  1)H(1, j +  1) d ( j +  1). 

A substantial improvement would be 

Z(ljlN) =Z(ljlN- 1) IZ(jNIN- l)H(lN) dlv, (6)  

where Z(jN1N - 1) = Z(j - ( j  - l), N - ( j  - 1)IN - 1) by symmetry. Starting from N = 
3 and increasing the chain length segment by segment, all functions on the RHS of (6) are 
known and Z(1jlN) may be determined. For the specific case mentioned earlier 
(N = 5) we would have 

271315) = Z(1314) 12(35/4)H(15) d5, (7) 

where, of course, 

Z(35 14) = Z( 13 14). 

We note that, provides the distributions are correctly normalised, they correctly 

(8) 

for the zero excluded volume case. 
This series of linked equations, which may be readily evaluated by Fourier trans- 

form techniques, describes the cumulative interference of the last segments ( j +  1 + N) 
with the subset (1 + i) under consideration. 

yield 

Z (  lilN),=o = Z (  li).=,, 
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A straightforward extension of the treatment outlined above for an entirely internal 
subset leads us to propose 

r 

Z(ijlN) = Z( i -  1 , j -  1IN- 1) Z(1i lN-  l)H(lN) d l ,  J (9) 

where again, working inwards from either end of the chain, we incorporate the 
cumulative effects of the interference of the two tails (1 + i - 1) and ( j  + 1 + N) with the 
subset (i + j ) .  Equation (9) correctly reduces to 

z(ijpv)E=o = Z(ij).=O (10) 

in the zero excluded volume limit, provided the distributions are correctly normalised. 
Equation (9) is, of course, also amenable to fast Fourier transform techniques. 
Moreover, it is immediately apparent from (9) that the location of an internal subset of 
)i - j l  particles within the chain will affect the distribution, since clearly the convolutions 

will differ, even though both internal distributions involve Ii - j l  segments, the latter 
subset being translated by m units along the chain. 

Nevertheless, we anticipate from the outset that the superposition product of three 
two-particle correlations determined on the above basis will yield internal distributions 
collapsed with respect to the exact internal functions, since cross-correlation of particles 
within the subsets is partially neglected. 

A comparison of isolated and internal eight-particle subsets is shown in figure 1. We 
see that the amplitude of the distribution at r = 1 is largest for the isolated chain, 
indicating a net expansion of the chain. The expansion appears to increase with the 
length of the tail, two short tails effecting a greater expansion than a single longer tail 
comprising the same number of segments. Z(rI8  = 1) is the end-to-end contact prob- 
ability of forming an eight-particle loop in the case of an isolated chain or an 
entanglement in the case of an internal distribution. 

4. The internal mean square lengths (Rir+kIN) 

We observed in B 2 that the overall behaviour of the internal distributions appeared to 
be a general expansion and an effective stiffening characterised by an effective internal 
exponent Tint* YR,S.  It is clear that, while this represents the overall behaviour, the 
actual behaviour, at least on the basis of equation (9), is much more complicated, 
depending not only on the number of segments within the subset, but also on the 
location of the subset within the chain, and the length of the chain N. 

In figure 2 we show the internal expansions ( I ? & N ) - ( I ? ? ; )  for (T = 1. In the case 
a = 0 the superposition approximations (6) and (9) correctly yield internal mean square 
lengths which are identical to the isolated value. In the case of a perfectly flexible chain 
of hard sphere segments (a = 1) the expanded mean square lengths are seen 
gradually to attain an asymptotic expansion. Closer examination shows that there is a 
gradual collapse of at least for i << N, N >> 1, although there is evidence that this 
behaviour occurs for all internal distributions. The initial expansion is clearly attribut- 
able to the interference of the tail with the subset under consideration, prohibiting 
certain of the collapsed configurations attainable if the subset were in isolation. 
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Figure 1. ( a )  Internal four-particle distributions for N = 4,5,6,10: -Z (1,414); - - -Z 
(1,4117), Z(1,4112); - . -2(9,12/20). ( b )  Internal eight-particle distributions for N = 8,9, 
10, 14, 20: - Z (1,818); . . . . .  Z(1,819); ----Z(2,9110); - . . - . .  Z(198114); 

Z(1,8120); - - Z(7, 14120). -- 

Increasing the tail length has a diminishing effect, and the expansion of the subset 
reaches a limiting value, and eventually initiates a collapse of the subset-a result 
familiar from conventional hard sphere fluid systems arising from the ‘crowding-in’ or 
asymmetrical screening of the set of segments under consideration. 

The behaviour and development of the internal distributions is considerably more 
complex, as anticipated, the expansion of a given subset depending both on N and on 
the location of the subset within the chain. Moreover, a purely internal subset is 
subjected to the combined effects of two tails, whose qualitative behaviour follows that 
outlined above for single-tailed subsets. As we might expect, the subset attains its 



2492 C A  Croxton 

N 

Figure 2. The relative internal expansions (R:&,N)  -(R:2),  

greatest expansion when the two tails are of equal length. In figures 3 and 4 we show the 
expansions (R;.lN) -(R:,)  for / i  - j /  = 4 and Ii - j l  = 8 respectively. We see at once that 
the eight-particle segments show a greater relative expansion throughout. Points with 
only one line leading out to the right are cases where both tails are the same length. 
Where two lines lead to the right from a point, the line with the steeper slope arises from 
adding one particle to the smaller of the two tails; the other line arises from adding one 
particle to the longer tail. In the case of the eight-segment subchain, the second particle 
added to a tail appears to make more difference to the length than does the first (i.e. 
(R:8/10)> ( R ~ 9 ~ l o ) ) ,  which means that there is a lot of crossing over and back in the lines 
where all the tails are small. 

5. Radius of gyration 

It is straightforward to show that the radius of gyration is related to the internal mean 
square lengths (Tanford 1961) 

In the case of a perfectly flexible chain with zero excluded volume (o. = O), the internal 
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Figure 3. The relative internal expansions (R$N) - (R;) for four-particle subsets. 

mean square lengths are identical to their isolated values ( y ~  = l), and we have 

(St) = n(n + 2 ) / 6 ( n  + l), (12)  

whereupon, for long chains, ys = 1 .  For perfectly rigid chains ( y ~  = 2) ,  again no 
excluded volume effects arise, and equation (11) leads to the result 

( sZ ,>=n(n  + 2 ) / 1 2 .  (13)  

On the basis of the internal mean square lengths reported in the previous section we 
are able to calculate the radius of gyration for polymer chains for which U = 1 .  A 
calculation of y on the basis of the linearisation of the exponent relation (St) = bnY 
yields, for the nth estimate of y, 

When plotted against l / n  this yields the smoothly varying curve shown in figure 5.  As 
reported in I, we expect over-collapsed configurations to contribute to the calculation of 
the radius of gyration, which will, in consequence, be consistently too small. Moreover, 
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Figure 4. The relative internal expansions (RfilN) - (Rfi) for eight-particle subsets 

as the fraction of bonds omitted increases with increasing N, we expect the results to 
tend to the zero excluded volume result as N +co(l/n+O). These results are shown 
only for completeness; we shall not attempt to draw any conclusions regarding the 
exponent y. 

6.  Conclusions 

On the basis of a convolution approximation together with a superposition approxima- 
tion¶ the internal distributions within a polymer chain incorporating excluded volume 
effects are calculated. It is found that the mean square lengths of internal subsets of 
particles are expanded with respect to their isolated values to an extent depending on 
the proximity of the subset to either end of the chain. 

As the length of the chain increases, a subset at a given location from one end of the 
polymer becomes progressively indifferent to the long tail, and tends asymptotically to a 
limiting expansion. Ultimately, however, for chains of length much greater than the 
length of subset, the tail 'crowds-in' the internal subset, and the expansion begins to 
decrease slowly-a result familiar in classical dense fluid systems. 
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Figure 5. Comparison of various yn estimates for the radius of gyration 
end-to-end distance. 
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Figure 5. Comparison of various yn estimates for the radius 
end-to-end distance. 
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